Impact of Rotavirus Vaccination on All-Cause and Rotavirus-Specific Gastroenteritis and Strain Distribution in Kiambu, Central Kenya: 11-Year Surveillance

Maurine Mutua1 Ernest Wandera2 Riona Hatazawa3 Naohisa Tsutsui4 Natsuki Kurokawa4 Cyrus Kithiiko2 Mary Wachira2 Eunice Njuguna2 Boniface Mwaura2 James Nyangau5 Samuel Khamadi5 Shingo Inoue2 Joseph Njau6 Satoshi Kaneko7 Yoshio Ichinose2

1Jomo Kenyatta University Of Agriculture And Technology, Juja, Kenya, \\
2Nagasaki University-Kenya Medical Research Institute, Kenyatta, Kenya, \\
3Fujita Health University, Japan, 4Mitsubishi Tanabe Pharma Corporation, Japan, \\
5Kenya Medical Research Institute, Mbagathi, Kenya, \\
6Kenya Medical Research Institute, Nairobi, Kenya
6 Kiambu County Referral Hospital, Kiambu, Kenya,
7 Nagasaki University-Kenya Medical Research Institute, Kenyatta, Kenya, Fujita Health University, Japan

The Global Health Network

Published on: Jun 16, 2023

DOI: https://doi.org/10.21428/3d48c34a.04f0b88c

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)
BACKGROUND: Rotavirus is the leading cause of severe childhood acute gastroenteritis (AGE) globally. Safe and effective vaccines are considered to be a high-impact and cost-effective public health intervention tool to greatly reduce the burden of AGE. A monovalent rotavirus vaccine was introduced into the National Immunization Program in Kenya in July 2014. The study evaluated the impact of the vaccine on hospitalization for all-cause and rotavirus-specific gastroenteritis and strain distribution in Kiambu, Central Kenya five years following vaccine implementation.

METHODS: Data on all-cause and rotavirus-specific AGE and strain distribution were derived from an 11-year hospital-based surveillance at Kiambu County Referral Hospital (KCH) between 2009 and 2020. Fecal samples were collected from children <5 years presenting with AGE. The samples were screened for group A rotavirus using ELISA and genotyped using multiplex semi-nested RT-PCR and direct Illumina Miseq next-generation sequencing.

RESULTS: Following the vaccine introduction, there was a prevalence of 10.1% (95% CI 9.8%-10.5%) and a monthly median of 24 for all-cause AGE, down from a monthly median of 97 recorded in the pre-vaccine period. This represented a reduction of 75.3% in all-cause AGE. Rotavirus-specific AGE was detected at 12.0% (95% CI: 10.6-13.5%), down from 27.5% (95% CI: 25.5-30.1%) observed in the pre-vaccine period, representing a decline of 53.4% (95% CI: 41.5-70.3%). Reductions in rotavirus hospitalizations were greatest among vaccine-eligible children (<12 months), with the peak shifting to older children post-vaccine introduction. Rotavirus AGE ranged predominantly from moderate to severe among the study population. Coverage with the last dose of rotavirus vaccine was 91% with a 6% drop-out, indicating good access and high utilization of the vaccine in the area. G3P[8] was the most predominant strain in post-vaccine, replacing G1P[8] which predominated in the pre-vaccine period. Additionally, we detected considerable proportions of uncommon strains G3P[6] (4.8%) and G12P[6] (3.5%) in the post-vaccine era.

CONCLUSION: The data points to a significant decline in all-cause and rotavirus AGE following the vaccine introduction, thus, providing evidence for a significant public health impact of the vaccine in Kiambu, Central Kenya. The shift in strain distribution could be due to vaccine-selective pressure hence continued surveillance is recommended.